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Vital sign monitoring using fiber-optic sensor

Introduction

Fiber optic sensors (FOSs) have gained increasing applications in various physical
measurements, such as strain, temperature, displacement ,and pressure. Based on
previous studies, FOS also has been demonstrated to work as well in monitoring vital
signs. Recently, unobtrusive sensing devices for vital signs have become a mainstream
application. With this advantage, it can help early screening of possible heart or
respiratory diseases in a non-hospital environment. Also, FOS has been demonstrated
as being useful to monitor heart rate and respiratory rate as well as traditional sensors
such as electrocardiogram electrode and respiratory inductive plethysmography. FOS
will be suitable for home screening and guidance for further examinations.

To validate the feasibility of the FOS, an oronasal airflow sensor and ECG are employed
in capturing respiratory, and heartbeat vibrations as well for comparison. The FOS
placed inside the smart-care film is used to detect heart and respiratory activity. As
shown in figure 2, the flexible FOS film is embedded into a pillow to measure breath
induced vibrations that appeared on the head and neck and the subtle cardiogenic body
movement once heart ejects blood into the arteries.

Smart film sensor(2mm)

User interface

Figure 1. smart-care film and system

Materials and Methods

The number of enrolled subjects is 63 adults who came for PSG examination at the Sleep
Center in Cardinal Tien Hospital Yung Ho Branch. Electrocardiogram and respiratory
signals and another relative physiological signals were simultaneously recorded by a
polysomnography monitor with a sampling rate of 200 Hz The data collection and
analysis was approved by the Human Subject Research Ethics Committee of Cardinal
Tien Hospital (IRB# CTH-104-2-6-040).
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Figure 2. Scheme of physiological measurement for sleep monitoring: one FOS is
placed inside a pillow. ECG, FOS deformations and oronasal airflow are recorded
simultaneously in a PSG system.

Once heart ejects blood into the arteries and the subtle cardiogenic body movement can
be measured using high sensitivity sensors. This variation we call it “ballistocardiogram”.
The first BCG research was published in 1877 and following Isaac Starr designed a
new type of bed BCG measurement device that can be considered as a modern
ballistocardiography measurement in 1936. Recently, various types of bed and chair
type BCG measurement devices have been developed.
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Figure 3. A theoretical BCG waveform and its components. The extrema of the
BCG waveform are denoted with F, G, H, |, J, K, L, M, and N. The R-spike of the
ECG can give timing reference.[1]

Respiration-induced head-neck vibrations were measured from FOS film inside the
pillow. Simultaneously, subtle cardiogenic body movement (ballistocardiogram) can be
recorded as well. The airflow from the oronasal thermistor, the respiratory effort from the
head-neck respiratory signals from FOS films and extracted BCG were adopted for
analysis. Four real measured physiological signals as shown in figure 4. these signals
can demonstrate the feasibility of fiber optic sensor.
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Figure 4. Four real measured physiological signals to demonstrate the feasibility
of fiber optic sensor (a) respiratory signal from FOS (b) respiratory signal from
temperature flow sensor (c) cardiogenic body movement (BCG) extracted from
signal(a) (d) lead one ECG

Results and Discussion

Evaluation of data from 8 subjects, the mean absolute error(MAE) of all subjects for the
average beats/breaths per minute computed during the sleep testing(overnight).
Averaged across the 8 subjects, the MAE error was 0.51 + 0.47 bpm and 1.07 £ 0.49 bpm
for the mean respiratory rate and mean heart rate as shown in table 1 and table 2
respectively.

Mean Breath Rate(breaths/min) Mean Heart Rate(beats/min)

s | oronasalfiow  Fos(Respiratory) KA | o icr" £c6 rosisce) [N
1 12.9941.21 14134152 114 1 60.3546.15 61.025.05 0.67
2 161419 16.3141.66 021 2 66.72:2.41 65.85:2.04 0.87
3 14394123 14374132 0.02 3 65.935.56 63.8414.06 2.09
4 13.3341.44 13.6341.38 03 4 67.59:7.68 66.18£5.86 141
5 14.21#1.11 14.54¢139 033 5 67.237.49 65.99£5.25 124
6 13.2111.1 14.5+1.8 1.29 6 61.212.89 62.1912.92 0.99
7 13.6741.09 14314131 0.6a 7 57.6245.81 58241365 062
8 13.56+1.42 13.7141.45 015 8 50.7444.29 51482.83 0.7

Total o047 |IESY 1.07+0.49

Table 1. Respiratory rate derived from Table 2. Heart rate derived from ECG
oronasal airflow and head-neck FOS. and head-neck FOS (BCG). The values
The values expressed by mean 1 expressed by mean % standard
standard deviation deviation

Conclusions

Electrocardiogram (ECG) has been widely used in clinical diagnosis of cardiovascular
diseases. But it is not convenient for long-time heart activity monitoring and traditional
respiratory sensors also have this disadvantage. To design an unobtrusive measurement
device with artificial intelligence for home environment monitoring is necessary. We have
developed an unobtrusive sensor with the proprietary non-invasive fiber optic
physiological monitoring technology and achieved the heart/breath rate measurement as
accurate as ECG/oronasal airflow sensor. The high sensitivity, high precision, and
accuracy of the fiber optic sensor can be applied to babies and elderly home/institutional
care and has been used in hospitals over several years. NFOPT can monitor sleep safety
and health with no wearable devices, no electromagnetic wave, with high safety and
accuracy. It can also combine with loT functions and it responds to movements of the
baby and elderly. It's unique simple movement learning system provides elderly with a
better quality of life and their dignity.

The application includes smart pillow; mat; mattress; smart clothes; smart care room and
smart care system. The best solution is Smart Care System that monitors and manages
multiple beds or rooms in a cost-effective way and helps to resolve the shortage of
caregivers problem by providing 24/7 auto rounds and allows care recipients an ability to
receive quality care with dignity.

Reference

[1] https://www.cs.tut.fi/lsgn/SSSAG/BCG.htm
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e Monitor Remotely

Smart Care System allows for reduced contact between infected and non-
infected persons.

¢ 24 hour monitoring

which provides complete coverage of all patients simultaneously and puts
less pressure and risk on medical staff.

eInstantaneous alerts

The system detects changes immediately and alerts users instantaneously.

eWaste Reduction

Reducing the contact of the medical staff also reduces the waste of medical.
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Sleep apnea assessment using declination duration-based global metrics from unobtrusive fiber optic sensors

Introduction

Sufficient sleep helps to restore the immune, nervous and cardiovascular systems, but is
sometimes disturbed by sleep apnea (SA). The early diagnosis of sleep apnea is
beneficial for the prevention of diseases. Polysomnography (PSG) recording provides
comprehensive data for such assessment, but is not suitable for use at home due to
discomfort during measurement and the difficulty of identification. This study proposes
an unobtrusive measurement process by placing fiber optic sensors (FOSs) in a pillow
(head-neck) or a bed mattress (thoracic-dorsal). We test two approaches: drop degrees
from the baseline to validate the capability of catching respiratory drops, and linear
regression models based on a new global measure, the percentage of the total duration
of respiratory declination (PTDRD), to estimate the hand-scored apnea/hypopnea index
(AHI). Based on data recorded from 63 adults, the drop degrees derived from respiratory
signals exhibited statistical differences among central sleep apnea (CSA), obstructive
sleep apnea (OSA) and normal breathing. The regression models based on the PTDRDs
derived from head-neck FOS and thoracic-dorsal FOS also achieved good agreement
with manually scored AHIs in Bland—Altman plots as well as oronasal airflow and
thoracic wall movement. The aforementioned performance demonstrates the capability
of the FOS measurement and the efficacy of the PTDRD metrics for SA assessment.

Materials and Methods

Two FOSs placed inside smart-care films are used to detect respiratory activity. As shown
in figure 2, one flexible FOS film is embedded into a pillow to measure breath-induced
vibrations that appeared on the head and neck. The other one is placed below a bed
sheet near the dorsal thoracic region to detect thoracic wall movements.

This study was performed on 63 adults who came for clinical sleep examination at the
Sleep Center in Cardinal Tien Hospital Yung Ho Branch. A PSG monitor was used to
record oronasal airflow from the thermal sensors and nasal pressure sensor, thoracic and
abdominal wall movements from respiratory inductive plethysmography (RIP), arterial
blood oxygen saturation, electroencephalograms (F3, F4, C3, C4, O1 and 0O2), an
electro-oculogram and electromyograms (left leg, right leg and chin). Simultaneously,
respiration-induced head-neck and thorax vibrations were measured from FOS films
inside the pillow and the bed sheet near the dorsal thoracic region. A sleep expert
following the AASM criteria, identified SA and HYPO in the PSG data. Based on the
analysis, their AHIs were calculated as the average number of respiratory events per
hour of total sleep time. The subjects in different AHI groups show no significant
differences in these data. This work adheres to the Declaration of Helsinki. The data
collection and analysis were approved by the Human Subject Research Ethics
Committee of Cardinal Tien Hospital (IRB# CTH-104-2-6-040). The participants gave their
informed consent.
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Figure 1. Non-invasive fiber optic physiological monitoring technology
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are placed inside a pillow and under the subject’s dorsal thoracic region,
respectively. FOS deformations as well as oronasal airflow, thoracic and
abdominal wall movements are recorded simultaneously in a PSG system.

Figure 3 shows the smoothed instantaneous respiratory intensity(IRI) of 5 min oronasal

airflow, thoracic wall movement and head-neck/dorsal thoracic FOS deformations from

three subjects with normal breathing, OSA and CSA. The IRI fluctuations are large and

distinct in the cases with OSA and CSA.
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Figure 3. Oronasal airflow and respiratory effort derived from thoracic RIP and

head-neck/dorsal thoracic FOSs (blue) and the computed IRI (red) during normal

breathing, OSA and CSA

Results and Discussion

valuation of gata from obo subjects, e drop aegrees associatea with various

respiratory events and normal breathing are listed in table 1.

Event Nasal Thoracic Head-neck Dorsal thoracic
v thermistor RIP FOS FOS
Central sleep apnea 79.3£0.1% 66.6+16%.

76.8+14.9% l 73.1420.7% l

Obtrusive sleep apnea 80.4111.6%1 39.6+21.8% 40.2+20.8% 27.3+22.3%

Hypopnea 37.6+15% 34.9+16.9% 24.9+17.5% 19.4+12.8%

Normal breathing 0.01+0.03% 0.01+0.04% 0.010.04% 0.01+0.05%

Table 1. Drop degrees associated with respiratory events and normal breathing

" . Correlation.
Measure. Regression-equation. .
coefficient.
Head-neck-FOS. AHI*:=-2,4266-PTDRD;+1.5211. 0.7215.
Dorsalthoracic-FOS. AHI*:=-2,2103-PTDRD,+2.3827. 0.8487.
Head-neck-and-dorsal-thoracic-FOS. AHI*:=:0.7313PTDRD; +:1.7964-PTDRD,+0.8681. 0.8616.
Oronasalthermistor. AHI*-=-2.0301-PTDRD;-+5.0245. 0.8657.
ThoracicRIP. AHI*=2.0252-PTDRD,4+2.0132 0.8436.
Oronasalthermistor-and-thoracic-RIP. AHI*:=-1.2436:PTDRD3+:0.9724-PTDRD;-+3.2726. 0.8954.

Table 2. Regression models for estimating the AHI* using PTDRD

PTDRD1, PTDRD2, PTDRD3 and PTDRD4 represent the PTDRDs derived from the
respiratory signals of the head-neck FOS, dorsal thoracic FOS, oronasal thermistor and
thoracic RIP, respectively. The relationship between the PTDRDs and the manually
scored AHI is indicated by the Pearson correlation coefficient.

Conclusions

FOS has been demonstrated as being useful to detect SA as well as traditional PSG,
it can help early screening of possible respiratory disorders in a non-hospital
environment. FOS will be suitable for home screening and guidance for further
examinations. Moreover, the new global metric, PTDRDs, expresses the frequency
of respiratory events by the percentage of durations in respiratory declinations,
without critical criteria to detect SA and hypopnea. The PTDRD derived from
oronasal airflow, thoracic RIP, head-neck FOS, dorsal thoracic FOS or their
combinations can be a potential indicator for assessing SA syndrome.
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Deep CONVOLUTIONAL NEURAL NETWORK FOR SLEEP STAGE CLASSIFICATION

Introduction

Humans spend roughly one-third of their lives asleep. Good quality and sufficient sleep
are crucial for all the people. According to the report of the American Sleep Association,
there are about 50-70 million US adults who suffer from a sleep disorder such as
insomnia, sleep apnea, restless leg syndrome, etc. In past decades, automatic sleep
stage scoring almost depended on feature extraction based methods by human
intelligence. With the rapid development of artificial intelligence over the last several
years, many new deep learning relative models had been utilized in medical field. It
overcomes the limitation of the feature extraction techniques and achieved a remarkable
accuracy for sleep stage scoring. In clinical sleep examination, polysomnography (PSG)
is considered as gold standard equipment which can provide comprehensive bio-signals
for sleep quality assessment and sleep breathing-related disorder diagnosis.
Identification of apnea/hypopnea events and sleep stage classification is usually
performed by sleep expert with computer-assisted sleep scoring system. Undoubtedly,
this is an extremely time-consuming work. To develop an automatic sleep stage scoring
system to aid physician to diagnose sleep disorders is necessary. Recently, a number of
researches focus on automatic sleep stage classification based on
Electroencephalography (EEG) had been proposed. But, sleep stages classification for
patients with different degree of sleep apnea severity is less addressed in literature.
There are various frequencies of sleep EEG signals and artifacts caused by arousal.
Typical methods for sleep stage classification cannot distinguish these variations. We
also found that using single filter size of proposed CNN is not appropriate for sleep stage
scoring in subjects with different severity of sleep apnea. In particular, the sleep stage
classification for those subjects who have moderate or severe sleep apnea. Once an
apnea event occurred, higher amplitude and frequency artifacts or awake-related
components may appear in EEG signals. This variation may lead to a misclassification.

Materials and Methods

The number of enrolled subjects is 43 adults who came for PSG examination at the Sleep
Center in Cardinal Tien Hospital Yung Ho Branch. The whole-night EEGs of each subject
were divided into consecutive 30-s epochs. In total, 32975 epochs are available from
these 43 subjects. And their demographic data of the subjects are listed in Table 1.
Electroencephalograms (F3, F4, C3, C4, O1, and O2 by the International 10-20 EEG
system), and relative physiological signals were simultaneously recorded by a
polysomnography monitor with a sampling rate of 200 Hz (The Philips Alice 6 LDX PSG
System, Philips Electronics, Inc., Amsterdam, Netherlands). The data collection and
analysis was approved by the Human Subject Research Ethics Committee of Cardinal
Tien Hospital (IRB# CTH-104-2-6-040).
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AHI<5 12/4 47.5%14.9 22.913.1
5< AHI<15 15 7/8 44.5 112 26.713.9
AHI 215 12 12/0 42+11.3 28.314.1
Overall 43 31/12 44.93+12.9 25.8%4.3

Table 1. Group categorized by apnea hypopnea index(AHI); data expressed in
terms of mean * standard deviation
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Figure 1. The EEG signals at F3 and C3 electrode in wake, N1, N2, N3 and REM
stages.
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The new model in this study was composed of three parallel CNNs extended from a
deep CNN resembled the LeNet-5 and AlexNet. Each CNN consists of two convolutional
layers, two max-pooling layers, two Local Response Normalization (LRN) layers, two
drop out layers, one stacking layer, one fully connection layer, and softmax layer. In
order to consider both temporal and frequency precision, the different size of filters at the
first layer of each CNN was adopted.The architecture of proposed CNN model was
illustrated in Figure 2.
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Figure 2. CNN Architecture

Results and Discussion

Evaluation of data from 43 subjects, we achieved overall 82.5% accuracy for sleep
stage scoring in all subjects with different severity of sleep apnea. In particular, the
sleep stage classification for those subjects who have moderate or severe sleep
apnea. Once an apnea event occurred, higher amplitude and frequency artifacts or
awake-related components may appear in EEG signals. This variation may lead to a
misclassification. We proposed an new CNN model to this overcome this issue. For
normal subjects, mild sleep apnea subjects, and moderate and severe subjects, the
classification accuracy is 82.8%, 82.8%, and 81.9% respectively.

CNN Model
Wake NREM1 | NREM2 | NREM3 REM Total Precision | Recall | Fl-score
Wake 4746 62 37 1 88 4934 75.7% 96.2% 0.847
< NREM1 479 1706 737 0 524 3446 53.5% 49.5%  0.5142
o
% NREM2 347 1039 14459 417 619 16881 92.9% 85.7%  0.8915
o
% NREM3 0 0 82 1108 0 1190 72.6% 93.1%  0.8159
REM 701 382 242 0 5199 6524 80.9% 79.7%  0.8027
Total 6273 3189 15557 1526 6430 32975

Table 2. Confusion matrix for all 43 subjects including normal individuals and
subjects with sleep apnea (accuracy is 82.5% and Kappa is 0.743)

Conclusions

The standard sleep stage classification specified by the AASM manual requires at least 3
channels of EEG to cover frontal, central and occipital brain areas, respectively. Recently,
a number of researches attempted to use single-channel EEG for sleep stage scoring by
deep learning and achieved over 80% accuracy. Two-channel EEGs measured at frontal
and central lobes were utilized in this study for comfortable measurement.

In previous, some studies have shown that the agreement rate in sleep stage
classification is less than 90% among sleep experts. Evaluation of data from 43 subjects,
we achieved overall 82.5% accuracy. Since subjects with sleep apnea symptom, once
apnea occurred, it accompanied with more high amplitude and frequency artifacts in EEG
signals. Thus, typical methods for sleep stage classification cannot distinguish this
variation and lead to misclassification easily. In this study, the proposed CNN model
adopted tree CNN with different size of filters that is suitable for sleep stage scoring in all
subjects with a different degree of sleep apnea severity. To design an unobtrusive
measurement device with artificial intelligence for home environment monitoring is our
future work.




